Properties

Label 3.9.ab_ad_bt
Base field $\F_{3^{2}}$
Dimension $3$
$p$-rank $1$
Ordinary no
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{3^{2}}$
Dimension:  $3$
L-polynomial:  $1 - x - 3 x^{2} + 45 x^{3} - 27 x^{4} - 81 x^{5} + 729 x^{6}$
Frobenius angles:  $\pm0.225992293488$, $\pm0.372040413785$, $\pm0.941167390149$
Angle rank:  $3$ (numerical)
Number field:  6.0.112056007.1
Galois group:  $S_4\times C_2$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $663$ $488631$ $459401319$ $284203914423$ $206932639697823$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $9$ $75$ $855$ $6603$ $59349$ $530343$ $4784460$ $43047795$ $387395757$ $3486660495$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 4 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

where $a$ is a root of the Conway polynomial.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3^{2}}$.

Endomorphism algebra over $\F_{3^{2}}$
The endomorphism algebra of this simple isogeny class is 6.0.112056007.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.9.b_ad_abt$2$(not in LMFDB)