Properties

Label 3.5.ah_bc_acx
Base Field $\F_{5}$
Dimension $3$
$p$-rank $2$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{5}$
Dimension:  $3$
Weil polynomial:  $1 - 7 x + 28 x^{2} - 75 x^{3} + 140 x^{4} - 175 x^{5} + 125 x^{6}$
Frobenius angles:  $\pm0.117658111351$, $\pm0.327130732663$, $\pm0.462990021908$
Angle rank:  $3$ (numerical)
Number field:  6.0.16537520.2
Galois group:  The Galois group of this isogeny class is not in the database.

This isogeny class is simple.

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 37 20387 2300068 236346491 29793108217 3837497853104 480136763602757 59746888106691803 7462330081330354804 932458842786590399507

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -1 33 146 605 3049 15720 78665 391557 1956206 9777533

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.