Properties

Label 3.5.ah_ba_acq
Base Field $\F_{5}$
Dimension $3$
$p$-rank $3$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{5}$
Dimension:  $3$
Weil polynomial:  $1 - 7 x + 26 x^{2} - 68 x^{3} + 130 x^{4} - 175 x^{5} + 125 x^{6}$
Frobenius angles:  $\pm0.0605820805461$, $\pm0.287119770935$, $\pm0.511693182811$
Angle rank:  $3$ (numerical)
Number field:  6.0.2419571.1
Galois group:  $S_4\times C_2$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 32 17024 1936928 228053504 30324608512 3809557738112 471784538663456 59300166091507712 7458349887882594848 932622132633578799104

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -1 29 125 585 3104 15605 77293 388625 1955159 9779244

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.