Properties

Label 3.4.aj_bl_ado
Base Field $\F_{2^2}$
Dimension $3$
$p$-rank $2$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{2^2}$
Dimension:  $3$
Weil polynomial:  $( 1 - 2 x )^{2}( 1 - 5 x + 13 x^{2} - 20 x^{3} + 16 x^{4} )$
Frobenius angles:  $0.0$, $0.0$, $\pm0.140237960897$, $\pm0.38771221219$
Angle rank:  $2$ (numerical)

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 5 2475 236180 14911875 982742625 67339641600 4440454748105 283399125631875 17994211219640180 1149268239963421875

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -4 10 59 226 936 4015 16544 65986 261851 1045250

Decomposition

1.4.ae $\times$ 2.4.af_n

Base change

This is a primitive isogeny class.