Properties

Label 3.4.ai_bd_acq
Base Field $\F_{2^2}$
Dimension $3$
$p$-rank $2$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{2^2}$
Dimension:  $3$
Weil polynomial:  $( 1 - 2 x )^{2}( 1 - 4 x + 9 x^{2} - 16 x^{3} + 16 x^{4} )$
Frobenius angles:  $0.0$, $0.0$, $\pm0.117169895439$, $\pm0.478661301576$
Angle rank:  $2$ (numerical)

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 6 2484 193158 12916800 1005365526 69811550676 4418266615062 279538617196800 17973379575871398 1154365295495115924

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -3 11 45 191 957 4163 16461 65087 261549 1049891

Decomposition

1.4.ae $\times$ 2.4.ae_j

Base change

This is a primitive isogeny class.