Properties

Label 3.4.ah_u_abo
Base Field $\F_{2^2}$
Dimension $3$
$p$-rank $1$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{2^2}$
Dimension:  $3$
Weil polynomial:  $( 1 - 2 x )^{4}( 1 + x + 4 x^{2} )$
Frobenius angles:  $0.0$, $0.0$, $0.0$, $0.0$, $\pm0.580430623255$
Angle rank:  $1$ (numerical)

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1/2, 1/2, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 6 1944 129654 12150000 1002943806 64650151944 4197173637894 278049761100000 17927392827511566 1146593284986534264

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -2 8 22 176 958 3848 15622 64736 260878 1042808

Decomposition

1.4.ae 2 $\times$ 1.4.b

Base change

This is a primitive isogeny class.