Properties

Label 3.4.ag_u_abw
Base Field $\F_{2^2}$
Dimension $3$
$p$-rank $0$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{2^2}$
Dimension:  $3$
Weil polynomial:  $( 1 - 2 x )^{2}( 1 - 2 x + 4 x^{2} )( 1 + 4 x^{2} )$
Frobenius angles:  $0.0$, $0.0$, $\pm0.333333333333$, $\pm0.5$
Angle rank:  $0$ (numerical)

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2, 1/2, 1/2, 1/2, 1/2]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 15 4725 257985 13820625 978129825 66556260225 4296296971905 278189293370625 18014329789743105 1154046302853530625

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -1 21 65 209 929 3969 16001 64769 262145 1049601

Decomposition

1.4.ae $\times$ 1.4.ac $\times$ 1.4.a

Base change

This is a primitive isogeny class.