Properties

Label 3.3.ag_u_abq
Base Field $\F_{3}$
Dimension $3$
Ordinary No
$p$-rank $2$
Contains a Jacobian No

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $3$
Weil polynomial:  $( 1 - 3 x + 3 x^{2} )( 1 - 2 x + 3 x^{2} )( 1 - x + 3 x^{2} )$
Frobenius angles:  $\pm0.166666666667$, $\pm0.304086723985$, $\pm0.406785250661$
Angle rank:  $2$ (numerical)

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 6 1260 38304 655200 13968966 386104320 10831393698 289464739200 7647174003168 205065119328300

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -2 14 46 98 238 728 2266 6722 19738 58814

Decomposition

1.3.ad $\times$ 1.3.ac $\times$ 1.3.ab

Base change

This is a primitive isogeny class.