Properties

Label 3.3.ag_t_abo
Base Field $\F_{3}$
Dimension $3$
$p$-rank $3$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $3$
Weil polynomial:  $( 1 - 2 x + 3 x^{2} )( 1 - 4 x + 8 x^{2} - 12 x^{3} + 9 x^{4} )$
Frobenius angles:  $\pm0.0540867239847$, $\pm0.304086723985$, $\pm0.445913276015$
Angle rank:  $1$ (numerical)

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 4 816 23788 443904 11926244 363956400 10295801996 278189309952 7586211740356 207582049122096

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -2 12 34 68 198 684 2154 6460 19582 59532

Decomposition

1.3.ac $\times$ 2.3.ae_i

Base change

This is a primitive isogeny class.