Properties

Label 3.3.af_p_abf
Base Field $\F_{3}$
Dimension $3$
$p$-rank $3$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $3$
Weil polynomial:  $1 - 5 x + 15 x^{2} - 31 x^{3} + 45 x^{4} - 45 x^{5} + 27 x^{6}$
Frobenius angles:  $\pm0.11329654039$, $\pm0.35182386554$, $\pm0.481790494592$
Angle rank:  $3$ (numerical)
Number field:  6.0.400967.1
Galois group:  $A_4\times C_2$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 7 1183 26173 445991 13038697 402514567 10956704192 288660092903 7775839770139 208787598926543

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -1 15 35 67 219 759 2288 6707 20069 59875

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.