Properties

Label 3.3.ae_g_ag
Base Field $\F_{3}$
Dimension $3$
Ordinary No
$p$-rank $1$

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $3$
Weil polynomial:  $( 1 + 2 x + 3 x^{2} )( 1 - 3 x + 3 x^{2} )^{2}$
Frobenius angles:  $\pm0.166666666667$, $\pm0.166666666667$, $\pm0.695913276015$
Angle rank:  $1$ (numerical)

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 6 588 14112 794976 18066486 420424704 11707372914 288077043072 7553142432864 205877327739468

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 0 6 18 114 300 792 2436 6690 19494 59046

Decomposition

1.3.ad 2 $\times$ 1.3.c

Base change

This is a primitive isogeny class.