Properties

Label 3.2.ad_j_an
Base Field $\F_{2}$
Dimension $3$
$p$-rank $3$

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $3$
Weil polynomial:  $( 1 - x + 2 x^{2} )^{3}$
Frobenius angles:  $\pm0.384973271919$, $\pm0.384973271919$, $\pm0.384973271919$
Angle rank:  $1$ (numerical)

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 8 512 2744 4096 10648 175616 2863288 23887872 138991832 907039232

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 0 14 24 14 0 38 168 350 528 854

Decomposition

1.2.ab 3

Base change

This is a primitive isogeny class.