Properties

Label 3.2.ad_h_al
Base Field $\F_{2}$
Dimension $3$
Ordinary No
$p$-rank $3$

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $3$
Weil polynomial:  $( 1 - x + 2 x^{2} )( 1 - 2 x + 3 x^{2} - 4 x^{3} + 4 x^{4} )$
Frobenius angles:  $\pm0.174442860055$, $\pm0.384973271919$, $\pm0.546783656212$
Angle rank:  $3$ (numerical)

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 4 224 868 3584 38764 340256 2278532 18837504 145132204 979023584

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 0 10 12 14 40 82 140 286 552 930

Decomposition

1.2.ab $\times$ 2.2.ac_d

Base change

This is a primitive isogeny class.