Properties

Label 3.2.ad_h_ak
Base Field $\F_{2}$
Dimension $3$
$p$-rank $2$

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $3$
Weil polynomial:  $( 1 - 2 x + 2 x^{2} )( 1 - x + 3 x^{2} - 2 x^{3} + 4 x^{4} )$
Frobenius angles:  $\pm0.25$, $\pm0.306143893905$, $\pm0.570118980449$
Angle rank:  $2$ (numerical)

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 5 275 1040 6875 56375 228800 1305715 14911875 145492880 1100721875

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 0 10 15 26 50 55 70 226 555 1050

Decomposition

1.2.ac $\times$ 2.2.ab_d

Base change

This is a primitive isogeny class.