Properties

Label 3.2.ac_f_ag
Base Field $\F_{2}$
Dimension $3$
$p$-rank $2$

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $3$
Weil polynomial:  $( 1 - 2 x + 2 x^{2} )( 1 - x + 2 x^{2} )( 1 + x + 2 x^{2} )$
Frobenius angles:  $\pm0.25$, $\pm0.384973271919$, $\pm0.615026728081$
Angle rank:  $1$ (numerical)

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 8 320 728 6400 39688 203840 1861336 18662400 126572264 960449600

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 1 11 13 23 41 47 113 287 481 911

Decomposition

1.2.ac $\times$ 1.2.ab $\times$ 1.2.b

Base change

This is a primitive isogeny class.