Properties

Label 3.2.ac_e_ai
Base Field $\F_{2}$
Dimension $3$
$p$-rank $0$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $3$
Weil polynomial:  $( 1 + 2 x^{2} )( 1 - 2 x + 2 x^{2} - 4 x^{3} + 4 x^{4} )$
Frobenius angles:  $\pm0.0833333333333$, $\pm0.5$, $\pm0.583333333333$
Angle rank:  $0$ (numerical)

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2, 1/2, 1/2, 1/2, 1/2]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 3 117 225 1521 43593 342225 1863921 16769025 152373825 1140785217

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 1 9 1 1 41 81 113 257 577 1089

Decomposition

1.2.a $\times$ 2.2.ac_c

Base change

This is a primitive isogeny class.