Properties

Label 3.2.ac_d_ac
Base Field $\F_{2}$
Dimension $3$
$p$-rank $2$

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $3$
Weil polynomial:  $( 1 - 2 x + 2 x^{2} )( 1 + x^{2} + 4 x^{4} )$
Frobenius angles:  $\pm0.25$, $\pm0.290215311628$, $\pm0.709784688372$
Angle rank:  $1$ (numerical)

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 6 180 702 14400 44526 189540 1823142 12960000 126467406 1208880900

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 1 7 13 39 41 43 113 191 481 1147

Decomposition

1.2.ac $\times$ 2.2.a_b

Base change

This is a primitive isogeny class.