Properties

Label 3.2.ac_c_a
Base Field $\F_{2}$
Dimension $3$
$p$-rank $0$

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $3$
Weil polynomial:  $( 1 + 2 x + 2 x^{2} )( 1 - 2 x + 2 x^{2} )^{2}$
Frobenius angles:  $\pm0.25$, $\pm0.25$, $\pm0.75$
Angle rank:  $0$ (numerical)

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2, 1/2, 1/2, 1/2, 1/2]$

Point counts

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 5 125 845 15625 42025 274625 1851505 11390625 126091745 1076890625

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 1 5 13 41 41 65 113 161 481 1025

Decomposition

1.2.ac 2 $\times$ 1.2.c

Base change

This is a primitive isogeny class.