Properties

Label 3.13.ar_fd_axm
Base Field $\F_{13}$
Dimension $3$
$p$-rank $3$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{13}$
Dimension:  $3$
Weil polynomial:  $( 1 - 7 x + 13 x^{2} )( 1 - 6 x + 13 x^{2} )( 1 - 4 x + 13 x^{2} )$
Frobenius angles:  $\pm0.0772104791556$, $\pm0.187167041811$, $\pm0.312832958189$
Angle rank:  $2$ (numerical)

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 560 4233600 10798833920 23532042240000 51258148307970800 112443608063027404800 247055866870251819395120 542815143389447140638720000 1192553296286215309816730420480 2620006291306630482093779865840000

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -3 147 2238 28847 371817 4826304 62746317 815752319 10604677254 137859052107

Decomposition

1.13.ah $\times$ 1.13.ag $\times$ 1.13.ae

Base change

This is a primitive isogeny class.