Properties

Label 3.13.aq_er_avd
Base Field $\F_{13}$
Dimension $3$
$p$-rank $3$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{13}$
Dimension:  $3$
Weil polynomial:  $( 1 - 7 x + 13 x^{2} )( 1 - 9 x + 45 x^{2} - 117 x^{3} + 169 x^{4} )$
Frobenius angles:  $\pm0.0772104791556$, $\pm0.215685987913$, $\pm0.344616475996$
Angle rank:  $3$ (numerical)

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 623 4461303 10920532112 23496688030431 51181625711781488 112405265180572883904 247053563007046732215083 542817232264809763704286767 1192545829512406157608235611664 2619996233207791499350984983687168

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -2 156 2263 28804 371263 4824657 62745730 815755460 10604610859 137858522871

Decomposition

1.13.ah $\times$ 2.13.aj_bt

Base change

This is a primitive isogeny class.