Properties

Label 3.11.aq_en_atc
Base Field $\F_{11}$
Dimension $3$
$p$-rank $3$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{11}$
Dimension:  $3$
Weil polynomial:  $( 1 - 4 x + 11 x^{2} )( 1 - 6 x + 11 x^{2} )^{2}$
Frobenius angles:  $\pm0.140218899004$, $\pm0.140218899004$, $\pm0.2939628337$
Angle rank:  $2$ (numerical)

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 288 1492992 2417234400 3203268083712 4203934039866528 5568437853216000000 7403646096458768439648 9851624936637438269325312 13110967172879088971994093600 17449746167746488620161164183552

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -4 100 1364 14940 162076 1774276 19496116 214400060 2358122684 25937935780

Decomposition

1.11.ag 2 $\times$ 1.11.ae

Base change

This is a primitive isogeny class.