Properties

Label 3.11.ap_ed_ari
Base Field $\F_{11}$
Dimension $3$
$p$-rank $3$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{11}$
Dimension:  $3$
Weil polynomial:  $( 1 - 6 x + 11 x^{2} )( 1 - 5 x + 11 x^{2} )( 1 - 4 x + 11 x^{2} )$
Frobenius angles:  $\pm0.140218899004$, $\pm0.22822922288$, $\pm0.2939628337$
Angle rank:  $3$ (numerical)

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 336 1645056 2523931200 3244050432000 4210466656559856 5564432369986560000 7399286919470169340176 9849227444670893948928000 13110067747977003449539588800 17449543701078556036959822260736

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -3 111 1422 15127 162327 1773000 19484637 214347887 2357960922 25937634831

Decomposition

1.11.ag $\times$ 1.11.af $\times$ 1.11.ae

Base change

This is a primitive isogeny class.