Properties

Label 3.11.an_df_amy
Base Field $\F_{11}$
Dimension $3$
$p$-rank $3$
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{11}$
Dimension:  $3$
Weil polynomial:  $( 1 - 5 x + 11 x^{2} )( 1 - 8 x + 32 x^{2} - 88 x^{3} + 121 x^{4} )$
Frobenius angles:  $\pm0.0750991438595$, $\pm0.22822922288$, $\pm0.424900856141$
Angle rank:  $2$ (numerical)

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class does not contain a Jacobian, and it is unknown whether it is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 406 1725500 2416006936 3127468750000 4168862454145466 5563259443298312000 7402850858960619757646 9849421608098688000000000 13109285827450483843880118376 17449265349453557126655824637500

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -1 119 1364 14591 160729 1772624 19494019 214352111 2357820284 25937221079

Decomposition

1.11.af $\times$ 2.11.ai_bg

Base change

This is a primitive isogeny class.