Properties

Label 2.9.am_cc
Base Field $\F_{3^2}$
Dimension $2$
$p$-rank $0$
Principally polarizable
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{3^2}$
Dimension:  $2$
Weil polynomial:  $( 1 - 3 x )^{4}$
Frobenius angles:  $0.0$, $0.0$, $0.0$, $0.0$
Angle rank:  $0$ (numerical)

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2, 1/2, 1/2]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 16 4096 456976 40960000 3429742096 280883040256 22834979731216 1851890728960000 150064135231503376 12156841915449020416

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -2 46 622 6238 58078 528526 4774222 43020478 387341758 3486548206

Decomposition

1.9.ag 2

Base change

This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{3^2}$.

SubfieldPrimitive Model
$\F_{3}$2.3.a_ag