Properties

Label 2.9.al_bw
Base Field $\F_{3^2}$
Dimension $2$
$p$-rank $1$
Principally polarizable
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{3^2}$
Dimension:  $2$
Weil polynomial:  $( 1 - 3 x )^{2}( 1 - 5 x + 9 x^{2} )$
Frobenius angles:  $0.0$, $0.0$, $\pm0.186429498677$
Angle rank:  $1$ (numerical)

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 20 4800 500240 42720000 3486022100 282375475200 22867899479060 1852470606720000 150071300232772880 12156878772998520000

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -1 57 686 6513 59039 531342 4781111 43033953 387360254 3486558777

Decomposition

1.9.ag $\times$ 1.9.af

Base change

This is a primitive isogeny class.