Properties

Label 2.9.ah_z
Base Field $\F_{3^2}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{3^2}$
Dimension:  $2$
Weil polynomial:  $1 - 7 x + 25 x^{2} - 63 x^{3} + 81 x^{4}$
Frobenius angles:  $\pm0.0842035494981$, $\pm0.435433986784$
Angle rank:  $2$ (numerical)
Number field:  4.0.37485.2
Galois group:  $D_4$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 37 6549 526621 41815365 3455537152 282711744261 22903290569917 1853342656482885 150090922335095221 12157845643682709504

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 3 83 723 6371 58518 531971 4788507 43054211 387410907 3486836078

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.