Properties

Label 2.9.af_n
Base Field $\F_{3^2}$
Dimension $2$
Ordinary No
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{3^2}$
Dimension:  $2$
Weil polynomial:  $1 - 5 x + 13 x^{2} - 45 x^{3} + 81 x^{4}$
Frobenius angles:  $\pm0.0703393266913$, $\pm0.545465958288$
Angle rank:  $2$ (numerical)
Number field:  4.0.1525.1
Galois group:  $D_{4}$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 45 6525 486405 41505525 3492738000 282749658525 22858698865005 1852896329439525 150115462463925045 12157969500864000000

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 5 83 665 6323 59150 532043 4779185 43043843 387474245 3486871598

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.