Properties

Label 2.9.af_m
Base Field $\F_{3^2}$
Dimension $2$
$p$-rank $1$
Principally polarizable
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{3^2}$
Dimension:  $2$
Weil polynomial:  $( 1 - 3 x )^{2}( 1 + x + 9 x^{2} )$
Frobenius angles:  $0.0$, $0.0$, $\pm0.553300379038$
Angle rank:  $1$ (numerical)

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 44 6336 475904 41184000 3479345804 282070204416 22836618789644 1852326013824000 150094603531668224 12157211066243956416

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 5 81 650 6273 58925 530766 4774565 43030593 387420410 3486654081

Decomposition

1.9.ag $\times$ 1.9.b

Base change

This is a primitive isogeny class.