Properties

Label 2.8.ad_i
Base Field $\F_{2^3}$
Dimension $2$
$p$-rank $1$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{2^3}$
Dimension:  $2$
Weil polynomial:  $1 - 3 x + 8 x^{2} - 24 x^{3} + 64 x^{4}$
Frobenius angles:  $\pm0.187696427621$, $\pm0.597252504027$
Angle rank:  $2$ (numerical)
Number field:  4.0.121032.1
Galois group:  $D_4$

This isogeny class is simple.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 46 4600 248998 16974000 1097431246 68897746600 4396278901942 281579683068000 18013844209627102 1152786226763863000

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 6 72 486 4144 33486 262824 2096310 16783456 134213598 1073615832

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.