Properties

Label 2.8.ad_h
Base Field $\F_{2^3}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{2^3}$
Dimension:  $2$
Weil polynomial:  $1 - 3 x + 7 x^{2} - 24 x^{3} + 64 x^{4}$
Frobenius angles:  $\pm0.171649807387$, $\pm0.606294418218$
Angle rank:  $2$ (numerical)
Number field:  4.0.6025.1
Galois group:  $D_4$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 45 4455 244620 16951275 1096437375 68874228720 4398568026345 281650875484275 18014384272166820 1152808256483841375

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 6 70 477 4138 33456 262735 2097402 16787698 134217621 1073636350

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.