Properties

Label 2.7.ai_bd
Base Field $\F_{7}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{7}$
Dimension:  $2$
Weil polynomial:  $( 1 - 5 x + 7 x^{2} )( 1 - 3 x + 7 x^{2} )$
Frobenius angles:  $\pm0.106147807505$, $\pm0.308124534521$
Angle rank:  $2$ (numerical)

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 15 2145 123120 5888025 282373575 13803229440 677939414055 33254534795625 1629309326805360 79810774019058225

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 0 44 360 2452 16800 117326 823200 5768548 40375800 282540764

Decomposition

1.7.af $\times$ 1.7.ad

Base change

This is a primitive isogeny class.