Properties

Label 2.7.ag_w
Base Field $\F_{7}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{7}$
Dimension:  $2$
Weil polynomial:  $( 1 - 4 x + 7 x^{2} )( 1 - 2 x + 7 x^{2} )$
Frobenius angles:  $\pm0.227185525829$, $\pm0.376624142786$
Angle rank:  $2$ (numerical)

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 24 2880 137592 5990400 282350904 13819740480 678426928728 33237327052800 1628080222787928 79778982037550400

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 2 58 398 2494 16802 117466 823790 5765566 40345346 282428218

Decomposition

1.7.ae $\times$ 1.7.ac

Base change

This is a primitive isogeny class.