Properties

Label 2.7.af_s
Base Field $\F_{7}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{7}$
Dimension:  $2$
Weil polynomial:  $( 1 - 4 x + 7 x^{2} )( 1 - x + 7 x^{2} )$
Frobenius angles:  $\pm0.227185525829$, $\pm0.439481140838$
Angle rank:  $1$ (numerical)

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 28 3024 132496 5818176 282879268 13908900096 679257372052 33208310064384 1627398540096784 79782948527388624

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 3 61 384 2425 16833 118222 824799 5760529 40328448 282442261

Decomposition

1.7.ae $\times$ 1.7.ab

Base change

This is a primitive isogeny class.