Properties

Label 2.7.ad_d
Base Field $\F_{7}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{7}$
Dimension:  $2$
Weil polynomial:  $1 - 3 x + 3 x^{2} - 21 x^{3} + 49 x^{4}$
Frobenius angles:  $\pm0.0763393099997$, $\pm0.632530896649$
Angle rank:  $2$ (numerical)
Number field:  4.0.103933.1
Galois group:  $D_4$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 29 2233 97643 5656189 284706224 13766393641 678049225127 33269573605653 1628406000841529 79794303640108288

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 5 47 281 2355 16940 117011 823331 5771155 40353419 282482462

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.