Properties

Label 2.5.ae_i
Base Field $\F_{5}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{5}$
Dimension:  $2$
Weil polynomial:  $1 - 4 x + 8 x^{2} - 20 x^{3} + 25 x^{4}$
Frobenius angles:  $\pm0.0320471084245$, $\pm0.532047108424$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(i, \sqrt{6})\)
Galois group:  $V_4$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 10 580 12490 336400 9629050 244129540 6042262810 151912857600 3815627066890 95367440008900

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 2 26 98 534 3082 15626 77338 388894 1953602 9765626

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.