Properties

Label 2.5.ad_l
Base Field $\F_{5}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{5}$
Dimension:  $2$
Weil polynomial:  $1 - 3 x + 11 x^{2} - 15 x^{3} + 25 x^{4}$
Frobenius angles:  $\pm0.300933478836$, $\pm0.472779926746$
Angle rank:  $2$ (numerical)
Number field:  4.0.6525.1
Galois group:  $D_4$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 19 1045 19399 385605 9621904 244330405 6086864719 152070658245 3814223251819 95468531488000

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 3 39 153 619 3078 15639 77913 389299 1952883 9775974

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.