Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 9 x + 71 x^{2} - 369 x^{3} + 1681 x^{4}$ |
Frobenius angles: | $\pm0.211163249537$, $\pm0.527129909542$ |
Angle rank: | $2$ (numerical) |
Number field: | \(\Q(\zeta_{5})\) |
Galois group: | $C_4$ |
Jacobians: | $69$ |
Isomorphism classes: | 91 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1375$ | $2930125$ | $4755796375$ | $7984359145125$ | $13426146538750000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $33$ | $1743$ | $69003$ | $2825563$ | $115886298$ | $4750316583$ | $194753838543$ | $7984917674803$ | $327381925076613$ | $13422659245067598$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 69 curves (of which all are hyperelliptic):
- $y^2=36 x^5+40$
- $y^2=27 x^6+14 x^5+25 x^4+30 x^3+9 x^2+30 x+34$
- $y^2=6 x^6+15 x^5+37 x^4+6 x^3+30 x^2+7 x+24$
- $y^2=40 x^6+24 x^5+11 x^4+33 x^3+2 x^2+19 x+13$
- $y^2=17 x^6+12 x^5+5 x^4+14 x^3+29 x^2+25 x+19$
- $y^2=35 x^6+8 x^5+26 x^4+8 x^3+16 x^2+27 x+17$
- $y^2=32 x^6+32 x^5+12 x^4+2 x^2+30 x+4$
- $y^2=26 x^6+36 x^5+15 x^4+13 x^3+17 x+22$
- $y^2=22 x^6+2 x^5+28 x^4+32 x^3+3 x^2+37 x+7$
- $y^2=26 x^5+14 x^4+22 x^2+26 x+22$
- $y^2=18 x^6+34 x^5+16 x^4+26 x^3+37 x^2+26 x+23$
- $y^2=35 x^6+17 x^5+31 x^4+20 x^3+22 x^2+15 x+29$
- $y^2=40 x^6+16 x^5+40 x^4+33 x^3+11 x^2+2 x+37$
- $y^2=15 x^6+8 x^5+27 x^4+34 x^3+39 x^2+19 x+38$
- $y^2=29 x^6+39 x^5+33 x^4+15 x^3+38 x^2+32 x+28$
- $y^2=29 x^6+11 x^5+12 x^4+35 x^3+33 x^2+10 x+29$
- $y^2=9 x^6+19 x^5+13 x^4+39 x^3+4 x^2+36 x+9$
- $y^2=34 x^6+17 x^5+36 x^4+19 x^3+7 x^2+40 x+30$
- $y^2=22 x^6+19 x^5+23 x^4+36 x^3+17 x^2+6 x+33$
- $y^2=15 x^6+10 x^5+20 x^4+22 x^3+20 x^2+26 x+13$
- and 49 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{5})\). |
Base change
This is a primitive isogeny class.