Properties

Label 2.4.af_o
Base Field $\F_{2^2}$
Dimension $2$
$p$-rank $1$
Principally polarizable
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{2^2}$
Dimension:  $2$
Weil polynomial:  $( 1 - 3 x + 4 x^{2} )( 1 - 2 x + 4 x^{2} )$
Frobenius angles:  $\pm0.230053456163$, $\pm0.333333333333$
Angle rank:  $1$ (numerical)

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 6 336 5994 78624 1074426 16447536 264956586 4282334784 68725531674 1099326896976

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 0 20 90 304 1050 4016 16170 65344 262170 1048400

Decomposition

1.4.ad $\times$ 1.4.ac

Base change

This is a primitive isogeny class.