Properties

Label 2.4.af_n
Base Field $\F_{2^2}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{2^2}$
Dimension:  $2$
Weil polynomial:  $1 - 5 x + 13 x^{2} - 20 x^{3} + 16 x^{4}$
Frobenius angles:  $\pm0.140237960897$, $\pm0.38771221219$
Angle rank:  $2$ (numerical)
Number field:  4.0.1025.1
Galois group:  $D_{4}$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 5 275 4820 66275 1022625 16966400 275308745 4358310275 68911390580 1098171421875

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 0 18 75 258 1000 4143 16800 66498 262875 1047298

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.