Properties

Label 2.4.af_m
Base Field $\F_{2^2}$
Dimension $2$
$p$-rank $1$
Principally polarizable
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{2^2}$
Dimension:  $2$
Weil polynomial:  $( 1 - 2 x )^{2}( 1 - x + 4 x^{2} )$
Frobenius angles:  $0.0$, $0.0$, $\pm0.419569376745$
Angle rank:  $1$ (numerical)

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 4 216 3724 54000 926404 16288776 268322044 4276044000 68247629044 1095615396216

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 0 16 60 208 900 3976 16380 65248 260340 1044856

Decomposition

1.4.ae $\times$ 1.4.ab

Base change

This is a primitive isogeny class.