Properties

Label 2.4.ad_e
Base Field $\F_{2^2}$
Dimension $2$
Ordinary No
$p$-rank $1$
Principally polarizable Yes
Contains a Jacobian No

Learn more about

Invariants

Base field:  $\F_{2^2}$
Dimension:  $2$
Weil polynomial:  $( 1 - 2 x )^{2}( 1 + x + 4 x^{2} )$
Frobenius angles:  $0.0$, $0.0$, $\pm0.580430623255$
Angle rank:  $1$ (numerical)

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 6 216 2646 54000 1043646 16288776 260225286 4276044000 68655500046 1095615396216

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 2 16 38 208 1022 3976 15878 65248 261902 1044856

Decomposition

1.4.ae $\times$ 1.4.b

Base change

This is a primitive isogeny class.