Properties

Label 2.4.ac_i
Base Field $\F_{2^2}$
Dimension $2$
$p$-rank $0$
Principally polarizable
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{2^2}$
Dimension:  $2$
Weil polynomial:  $( 1 - 2 x + 4 x^{2} )( 1 + 4 x^{2} )$
Frobenius angles:  $\pm0.333333333333$, $\pm0.5$
Angle rank:  $0$ (numerical)

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2, 1/2, 1/2]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 15 525 5265 61425 1017825 16769025 266370945 4278189825 68988437505 1102737050625

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 3 29 81 241 993 4097 16257 65281 263169 1051649

Decomposition

1.4.ac $\times$ 1.4.a

Base change

This is a primitive isogeny class.