Properties

Label 2.4.ac_b
Base Field $\F_{2^2}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{2^2}$
Dimension:  $2$
Weil polynomial:  $1-2x+x^{2}-8x^{3}+16x^{4}$
Frobenius angles:  $\pm0.0935673124239$, $\pm0.65111427989$
Angle rank:  $2$ (numerical)
Number field:  4.0.1088.2
Galois group:  $D_4$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 8 224 2696 65408 1089288 16380896 271193672 4345445888 68712350792 1101692811744

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 3 15 39 255 1063 3999 16551 66303 262119 1050655

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.