Properties

Label 2.4.ab_f
Base Field $\F_{2^2}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{2^2}$
Dimension:  $2$
Weil polynomial:  $1-x+5x^{2}-4x^{3}+16x^{4}$
Frobenius angles:  $\pm0.304731991158$, $\pm0.605597892078$
Angle rank:  $2$ (numerical)
Number field:  4.0.2873.1
Galois group:  $D_4$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 17 459 4148 70227 1110797 16127424 261613901 4318188003 68947130996 1099519078059

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 4 26 67 274 1084 3935 15964 65890 263011 1048586

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.