Properties

Label 2.4.a_d
Base Field $\F_{2^2}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{2^2}$
Dimension:  $2$
Weil polynomial:  $1 + 3 x^{2} + 16 x^{4}$
Frobenius angles:  $\pm0.31117864677$, $\pm0.68882135323$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{5}, \sqrt{-11})\)
Galois group:  $C_2^2$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 20 400 3980 78400 1050500 15840400 268421180 4292870400 68719312820 1103550250000

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 5 23 65 303 1025 3863 16385 65503 262145 1052423

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.