Properties

Label 2.3.ad_f
Base Field $\F_{3}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $2$
Weil polynomial:  $1-3x+5x^{2}-9x^{3}+9x^{4}$
Frobenius angles:  $\pm0.0975263560046$, $\pm0.527857038681$
Angle rank:  $2$ (numerical)
Number field:  4.0.2197.1
Galois group:  $C_4$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 3 81 549 4941 62448 578097 4778049 43050933 396546543 3534057216

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 1 11 19 59 256 791 2185 6563 20143 59846

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.