Properties

Label 2.3.ac_g
Base Field $\F_{3}$
Dimension $2$
$p$-rank $1$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $2$
Weil polynomial:  $( 1 - 2 x + 3 x^{2} )( 1 + 3 x^{2} )$
Frobenius angles:  $\pm0.304086723985$, $\pm0.5$
Angle rank:  $1$ (numerical)

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 8 192 1064 6144 59048 536256 4599176 41779200 391199816 3544297152

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 2 18 38 78 242 738 2102 6366 19874 60018

Decomposition

1.3.ac $\times$ 1.3.a

Base change

This is a primitive isogeny class.