Properties

Label 2.3.ab_g
Base Field $\F_{3}$
Dimension $2$
$p$-rank $1$
Principally polarizable
Does not contain a Jacobian

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $2$
Weil polynomial:  $( 1 - x + 3 x^{2} )( 1 + 3 x^{2} )$
Frobenius angles:  $\pm0.406785250661$, $\pm0.5$
Angle rank:  $1$ (numerical)

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 12 240 1008 4800 51972 564480 4968948 42720000 384782832 3487321200

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 3 21 36 57 213 774 2271 6513 19548 59061

Decomposition

1.3.ab $\times$ 1.3.a

Base change

This is a primitive isogeny class.