Properties

Label 2.2.c_d
Base Field $\F_{2}$
Dimension $2$
$p$-rank $2$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $2$
Weil polynomial:  $1 + 2 x + 3 x^{2} + 4 x^{3} + 4 x^{4}$
Frobenius angles:  $\pm0.453216343788$, $\pm0.825557139945$
Angle rank:  $2$ (numerical)
Number field:  4.0.1088.2
Galois group:  $D_{4}$

This isogeny class is simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 14 28 98 224 574 6076 16562 65408 245294 1011388

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 5 7 11 15 15 91 131 255 479 987

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.