Properties

Label 2.2.ac_c
Base Field $\F_{2}$
Dimension $2$
$p$-rank $0$
Principally polarizable
Contains a Jacobian

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $2$
Weil polynomial:  $1 - 2 x + 2 x^{2} - 4 x^{3} + 4 x^{4}$
Frobenius angles:  $\pm0.0833333333333$, $\pm0.583333333333$
Angle rank:  $0$ (numerical)
Number field:  \(\Q(\zeta_{12})\)
Galois group:  $C_2^2$

This isogeny class is simple.

Newton polygon

This isogeny class is supersingular.

$p$-rank:  $0$
Slopes:  $[1/2, 1/2, 1/2, 1/2]$

Point counts

This isogeny class contains a Jacobian, and hence is principally polarizable.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 1 13 25 169 1321 4225 14449 74529 297025 1047553

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 1 5 1 9 41 65 113 289 577 1025

Decomposition

This is a simple isogeny class.

Base change

This is a primitive isogeny class.

Additional information

This is the isogeny class of the Jacobian of a function field of class number 1.